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Abstract. In this paper we compute new classes of symmetry reduction and associated
exact solutions of a generalized nonlinear $climger equation (GNLS), the generalized terms
modelling dispersion and scattering. Several authors have obtained symmetry reductions of one-,
two- and three-dimensional nonlinear Satlinger equations; in all cases to date reductions have
been based on @al new independent variable. In this paper we compute reductions in which
the new independent variable is complex. We seek new reductions from a two-dimensional
GNLS to a PDE in two independent variables and also reductions to ODEs. Five new classes
of reduction are found.

1. Introduction

In this paper we compute a new class of symmetry reductions and associated special, exact
solutions of a generalized nonlinear Satlinger equation:

s + x4+ 1ty + (@1 +iaz) - (8, +]3,)(ulul?)

+u(by +ibz) - (19, +jd,)(Jul®) + culul* + dulu|? = 0 (1.1)
where
a1 = anl + a1y b1 = byii + b1g]
) ) . . (1.2)
az = a1l + azy| bz = boii + b2

anda;;, b;;, c andd are real constants. This equation is a generalization of the ubiquitous
cubic nonlinear Sclidinger equation

i, + uyy + dulu)?> = 0. (1.3)

The generalization represents further physical effects such as dispersion and scattering.
Several authors have obtained symmetry reductions of the one-, two- and three-
dimensional nonlinear Scbdinger equation. In all cases the new dependent variable is
complex but the new dependent variable(s) is (are) real. In this paper we seek reductions
in which the new dependent variable(s) is (are) complex.
In many cases the new independent variables in the reductions which have been found
are linear in the given spatial variables; such reductions (at least those to ODES) are of the
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form
u(x,y,t) = R(t)p(&) expli®(x, y, 1)} (1.4a)
v(x, y,t) = R()q(&) exp{—i®(x, y, 1)} (1.40)
E(x,y,0) = (x +ky)0(t) + ¥ (2) (1.4c)
with all functions realx real and
6 =R" (1.5)

wheren is an integer. (Reductions found to PDEs take a similar form.) Here we suppose
that the new independent variabég,is not real; we suppose

E(x, y, 1) = (x +1Y)0 @) + ¥ (1) + i (1) (1.6)

where, again, all functions are real. As a result we are no longer constrained by (1.5) and
are able to compute large classes of new reductions.

In addition to reductions to ODEs based on (1.6) we consider analogous reductions to
PDEs in just two independent variables. We suppose

u(x,y, t) = pE, 1)exp{id(x, y, 1)} v(x,y, 1) =qE", exp{—id(x,y, 1)} (1.7a)

E(x, y, 1) = (x +1)0 + Y () + i (0). (1.70)

Note that in this case we have been able tomet 1 without loss of generality. (To see
that this is indeed without loss of generality consider (2.8) and its accompanying text.)

2. Background

The nonlinear two-dimensional Sc¢linger equation was first derived to describe deep
water waves (Zakharov 1968) and subsequently has arisen in studies of quantum field
theory (Dixon and TusZyski 1989, Tuszfygski and Dixon 1989), weakly nonlinear waves
(e.g., Parkes 1987) and optics (e.g., Gagnon a@ladrigjer 1991).

Special, exact solutions of PDEs are often useful: the solutions may be directly
(physically) significant, they may be of use to obtain information about asymptotics of
other solutions, or can be used to provide a check on numerical solutions. One powerful,
systematic method of determining exact solutions involves the ugeoiot symmetries
given (1.1), any transformation of the form

x — x(x,y,t,u) t— t(x,y,t,u) @.1)
y—nx,y,t,u) u— v(x,y,t,u)
which leaves the equatianvariant, i.e. unchanged, is a point symmetry of the equation.
Given the point symmetries of a PDE one can find a corresponding transformation to an
equation with fewer independent variablesieduction Alternatively, as we do here, one
can seek transformations which reduce a given PDE directly; the corresponding symmetries
may then be deduced if required. The standatdssical] method of determining point
symmetries is due to Lie and is described in several textbooks (Bluman and Kumei 1989,
Hill 1992, Olver 1986, Stephani 1990).

Several papers have been published in which reductions and exact solutions of a
nonlinear Schidinger equation are determined which reflect the point symmetries of the
equation: Tajiri (1982) found symmetries and associated reductions of the two-dimensional
cubic equationd = a; = a; = b; = b, = 0); the same symmetries and reductions were
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later found independently by Ramasan and Debnath (1994); Fushchich and Serov (1987)
found some solutions of the three-dimensional equation; Gagnon and co-workers (Gagnon
and Winternitz 1988, 1989, 1990, Gagnehal 1988) made a systematic study of the
symmetries, associated reductions of the three-dimensional GNLS, and the integrability of
the resulting equations in fewer independent variables. All these studies used the classical
method due to Lie.

For later reference we give the results obtained for (1.1) from Lie’s method (Tajiri 1982,
Ramasami and Debnath 1994). The symmetries are

Vi=0, (t-translation) (2.2)
Vo = 0, (x-translation) (2.B)
Va3 =9, (y-translation) (2.2)
Vi =yoe —x0, (rotation) (2.20)
Vs = vo, — ud, (constant change of phase) @2
Vo = 2t0; + x0y + ydy — 8(ud, + v9y,) (scaling) (2.2)

wheres = 1 if ¢ =0 andd # 0, ands = 3 is ¢ # 0 andd = 0. Also, with a;; = 0, we
obtain

V7 = 2itd, + x(ud, — vd,) (Galilean boost) 2@
Vg = 2itdy + y(ud, — vd,). «C » ) (2.2n)
The corresponding new independent variables are
X 4+ vt + v Y+ v3t + vy
g="—-"—° (== (2.3)
VO()  O(1)
where Q(t) = vst? 4+ vgt +v7, v, i = 1,..., 7, being constants.

More general methods of finding reductions of PDEs exist, the most significant being
the so-called non-classical method due to Bluman and Cole (1969), and the direct method
due to Clarkson and Kruskal (1989), of which there are, in turn, various extensions and
generalizations (Hood 1995, 1997, 1998). The only study using a more general non-classical
method, to date, appears to be that by Clarkson (1992) who investigated reductions of the
one-dimensional GNLS and showed that the reductions found could readily be extended
to higher-dimensional equations. No study of higher-dimensional GNLS equations using
a nonclassical method has apparently been made to date. (Clarkson did not study higher-
dimensional equations explicitly.)

In this paper we determine several classes of new reduction of the generalized nonlinear
Schibdinger equation (1.1), based upon thegmns (1.6) and (1.7). We follow the Clarkson—
Kruskal method, except that the procedures are complicated by the use of a complex new
independent variable in addition to complex new dependent variables.

The method is well explained by an example (which is based on appendix B of Clarkson
and Kruskal 1989). Suppose we wish to determine reductions of Burgers’ equation

U, +uuy +u,, =0 (2.4)

then one supposes that there exist transformatiogs,t) = U(x,t, w(&(x, t))), which
yield an ODE inw (). It turns out that it is sufficient to consider

u(x,t) =alx,t) + Bx, HwE(x, 1)) (2.5)
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(appendix B of Clarkson and Kruskal 1989). Substituting equation (2.5) in (2.4) one finds
BELW" + (2B + BEux + & + s + (B + i + afi + aflo

+B2%E w4+ BBrw® + oy + o, + oy, =0 (2.6)

and requiring that this be an ODE one then obtains a system of PDEs for the unknown
functions,«, 8 andé, viz.

BEITA(E) = 2Bk, + BEwx + BE, + P (2.7)
BEIT2(8) = Bur + B + 0B, + B (2.70)
PEIT(E) = B2, (2.7c)
PEET4(E) = PP, (2.7d)
BEZT(56) = o + ey + aux (2.7€)
wherel';(¢),i =1,...,5, are to be determined. Solution of the system yields the desired

reductions.

Any particular reduction is in fact a class of reductions equivalent through a
transformation of the new variables. One can make use of this by redefinitions of these
variables during the computation:

1. For example, any reduction which leads to
dR*@)|pl°p + IR0 p —if ()R pe +iRW)p + g)R(1)p =0 (2.8)

is equivalent to one in whicl® = 1 through a rescaling op — R~1p. This is why
we may setR = 1 without loss of generality in ansatz (1.7).

2. One can also redefine the new independent variable in a similar way, however, since
we have already chosen the form in this paper (cf equation (1.6)) then we do not use
this freedom here.

Many reductions of the GNLS found to date are of the form
ux,y,t) = R@)p&) explid(x, y, 1)} (2.9%)
E(x,y, 1) =mn-x6(1) + Y (1) (2.%)

(in one, two or three dimensions, and by both classical and non-classical methods). In
each one finds that and R must satisfy (1.5); this is a particularly restrictive condition.
Substituting equations (2.9) in (&)l one finds a result of the form

(n2 + n3 +n3)RO?p” + R%0(2a11+ - - ) pap’ + R*0(az1 — - - ) p°q’
+R¥d+--)p’q+(-)p + (-)p=0. (2.10)

Balancing the coefficient op” with the other coefficients leads to (1.5). In this paper we
use anatze which circumvent (1.5): the new independent variable is complex. (To the
author’s knowledge only real new independent variables have been previously considered.)
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Notation. Unless otherwise stated the following notation is used in sections 3 and 4:

1. A, i =12, ... arereal constants, for example constants of integration, which remain
arbitrary.

2. T;,i=1,2,... are functions obtained in balancing coefficients of products of powers
of derivatives of new dependent variables; these are to be determined. Often it turns
out that these are necessarily constant. In this €ase replaced withy;. (In addition,
in section 4 we use the lower case when a balance-function is necessarily a function
of t alone.)

3. New reductions to ODEs

In this section we compute reductions of (1.1) by using the ansatz (1.6). Two terms in
(1.1) are non-analytic. To overcome this problem, we defiGe y, r) to be the complex
conjugate ofu(x, y, t) and so write (1.1) as the system

i1t + txy + ttyy + (@1 +iag) - (10, +0y) (u?) 4 u(by + iby) - (10, +0y) (uv)
+cutv?+duv =0 (3.1a)
—iv; + Ve + 0y + (@1 — iap) + (3 +]3,) (uv?) + v(by — iby) - (19, +]d,) (uv)

+ cu?v® + duv? = 0. (3.1b)
Remarks.

1. Note that since is complex we requirey(§) to be the complex-conjugate of(¢)
throughout the complex plane, rather than just along the real line.

2. When balancing coefficients of products of powers of derivativgsarfidg, in general,
each resulting equation is complex and is therefore equivalent to two real equations.

Substituting equation (1.6) in (3} and grouping terms we find
cR°p%q® + pap' | R®0[2a11 — 2az; + b1y — baz + 1(2a21 + 2a12 + bo1 + b12)] }

+ p?q' {R®0lar1 — azp + b1y — bao + i(az1 + a12 + bo1 + b12)] }

+ p?q{R3(d + [a11 + b11 + i(az1 + b21)]

+[a12+ b1z + i(az2 + b22)]®y) } + p'{iRE + 2IRO (D, +iD,)}

+ p{iR +iR(@yy + Pyy) — R(® + % + 02} =0. (3.2)

Focusing on the coefficients ¢2¢2, pgp’ and p?q’ we find that there are three cases to
consider. Firstd = R = 0 with ¢ # 0 and at least one of the coefficientsafp’ and p%q’
non-zero. Second; # 0 and the coefficients ofgp’ and p?q both equal to zero. Third,

¢ = 0 and the coefficients of bothpgp’ and p?q’ zero. We consider each of these cases in
turn in the follwoing subsections. Since the computation is similar for each subsection, we
give the details leading to reductions only in subsection 3.2; in the other cases we simply
guote the results. (One might suppose two other cases exist.cfiesf and at least one of

the coefficients ofpgp’ and p?q non-zero, withd(r) = R?(¢); second,c = 0 and at least

one of the coefficients opgp’ and p?g non-zero withd # 0. It turns out that there are no
reductions in either case.)



9720 S Hood

3.1.¢ # 0, at least one of the coefficients gfp’ and p?¢’ non-zero

In this section we consider the first case, fle= R = 0. There is just one reduction.

Reduction 1. For any values of;;, b;;, ¢ andd, then

u(x,y,t) = pE explid(x,y, 1} v(x, y, 1) =qE") exp{—id(x, y, 1)} (3.3)
O(x,y, 1) = —2rx — (s — yu)y — 3(AF +A3) — yaor (3.30)
E(x,y, 1) =x +iy+ it + A2 +i(hst + Aa) (3.%)

reduces the two-dimensional GNLS to the system

ep3q? + |2a11 — 2azp + b1y — bap + 1(2ap1 + 2a12 + bo1 + b12) } pap’
+ {a11 — azo + b1y — bap + (a1 + as2 + ba1 + b12) | p?q’
+{d — ral(ar1 + b1y) +i(az1 + b21)]
—2(ha — ywlazz + b2+ i(aze + b22)1 } p°q — y1ip' + yaorp = 0 (3.4)

c.c.=0. (3.4b)

To integrate (3.4) writep = r exp(io), ¢ = r exp(—io), and take real and imaginary parts
yielding

cr® + {3a11 — 3azp + 2b11 + 2boo}r?r’ — {az1 + arp}r®c’ + {d — 3ri(ans + b1y
— 2(ha — yu)(azz + ba2}r® — yuir' + yaor =0 (3.%)
{3az1 + 3aip + 2boy + 2b12}r?r’ + {ai1 — az}ric’

— 3{r (@21 4 b21) + (A3 — y1i) (@22 + bao) }r® — yrire’ = 0. (3.%0)

This system forr and o is integrable in terms of quadratures; there are several cases
depending upon the value of the (constant) coefficients within the system.

3.2. ¢ # 0, coefficients of botlpgp’ and p%q’ zero

Given that the coefficients of bothgp’ and p?¢’ are equal to zero, after a little algebra we
find

ajg—axn =20 a»+ap=0

(3.6)
b1y — b =0 b1+ b1 =0.

Equation (3.2) becomes
cR°p°q® + p'{iRE + 2iRO(®, +1D))} + p°q{R3(d + [a11 + b11 + i (az1 + b2)] D,
+[a12+ b1z + (a2 + b22)| D)) } + p{iR +IR(Drr + D)

—R(®+®%+ 02} =0 (3.7)
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and then balancing coefficients of powers of products of derivativgsarfdg we find the
determining system

£ +20(d, +id,) = RT1¢ (3.8a)
R+ R(®,, + ®,,) = R°T, (3.80)
—® — &% — 92 = RT3 (3.8c)
d + [a11 + b11 + (@21 + b21)] Py + [a12 + b1z + i(azz + b2p)] @, = R?T4. (3.8d)
Remarks.

1. We have introducedl, ¢ rather than"; purely for notational convenience.

2. Ty is the coefficient of p’, not p’.

3. Equations (3.8) and (3.®) are complex and therefore each represents two real
equations, whilst (318 and (3.8) are real equations, from the imaginary and real
parts of the coefficent op.

Adding equations (3#) to its complex conjugate we obtain a quadraturedqx, y, r)
and integrating this with respect fowe obtain

R* x20 xfﬂ,

D(x,y,1) = @(Fl +I7) — 2w 2 ¢1(y, 1) (3.9)

whereg:(y, t) is a function of integration, to be determined, d{ds the complex conjugate
of I';. Substituting back in (38 we find

i(y6 + ¥ + 20¢1 ) = RT1(8). (3.10)

The right-hand side is independentxofind has no real part, 96 ; is necessarily constant,
iyii, say. Now integrating (3.10) we obtain

2

0 .
9100.1) = =2 = 255 = 7iRY) + g0 (3.11)
whereg,(¢) is a function of integration. Collecting results we have
6 Xy .
D(x,y, 1) = —E(x2 +y?) — % - %(wi — Y1iR*) + p10(). (3.12)

Given (3.12), the left-hand side of (®Bis independent of andy, and is also real, so
that ', is necessarily constant and reg;, say, and we have

.6
R — ER = yuR® (3.13)

a Bernoulli equation foR(z), givené(z).

Next, substituting (3.12) in (3¢} we see that the left-hand side is quadratic in both
andy so, without loss of generality, we suppose thaté) = y3E2 + yz1€ + y30. Then
equating like coefficients of products of powersxofind y, and taking real and imaginary
parts, we findys, = y31 = 0, y30 is real, yso, Say, and

06 — 262 =0 (3.1%)

Oy — 204, =0 (3.1%)

Oy — 20y — 4y1iO R°R + 216 R* = 0 (3.1%)
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and

y 1
$10(t) = f {Vaor + % + @(wiz + mR“)Z} dr. (3.15)
It remains to check consistency with (8)8 Substituting equation (3.12) in (Bwe
see thatl’y must be linear(yair + iya1)é + vaor + vaoi Say. Then equating coefficients
of products of powers ofc and y, and taking real and imaginary parts we find that

Yair = ya1i = yaoi = 0 and consequently

a1 +biy=app+b12=0 (3.16)

andd = y40;R?, i.€. R is necessarily constant if is non-zero. This is inconsistent with
(3.14a) and (3.13), sa@ = 0. Similarly we find that

az1+ ba1 = azp+ by = 0. (3.17)
(Note that equations (3.6), (3.16) and (3.17) i mean that;; = 0 and/orb;; = 0, for
all i, j)
Neglecting constant solutions of (3dy% which are considered in subsection 3.1, we
have obtained one reduction of (3.1).

Reduction 2. Given equations (3.6), (3.16) and (3.17) (conditionsagnand b;;, which,
as a special case are satisfieddgy= b;; = 0 for all i, j), and provided = O then

ux,y,t) = R@)p&) explid(x, y, 1)} v(x, y,1) = R(t)q(E") exp{—id(x, y, 1)}
(3.18)
D(x,y, 1) = # — Loaxt — 3yt (Vi + yaiRY @) + p10(r) (3.180)
E(x, y,1) = xtiy —}‘71+,\2+i1m(t) (3.1%)
where
R(t) = (rat* + dyot) " (3.18)
Yi(1) = ni / R(t) dr — % + s (3.1%)
and wherep andg satisfy
cp®q® — v’ + (vsor + iya)p =0 (3.1%)
cp’q® — v1iq’ + (vaor — iy2)g = 0. (3.1%)

To integrate (3.19) we writep = r exp(io), ¢ = r exp(—io), and substituting and taking
real and imaginary parts we find

cr® — yair’ + yaor =0 (3.2()
—1i0” + yar = 0 (3.2m)

from which it is easy to determine bothando. We find that

r i dr
/ e R T (3.21)
cry + vaor'1 Vi
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3.3. ¢ = 0, coefficients opgp’ and p?q’ zero

We obtain just one reduction.

Reduction 3. Providedc = 0 and

ail — axp = az1 + aip = b1 — byp = b1 + b1o

=a1n+ bt =ap+bio=ax+ by =axn+by=0.

then
ux,y,t) = R@)p&)explid(x, y, 1)} v(x, y,1) = R(t)q(E") exp{—id(x, y, 1)}
(3.223)
dx, y,1) = xzityz — Luaxr — 3yt (i + iR (D) + 10(0) (3.22)
E,y. 1) = xtiy —)‘71+Az+iwi(r) (3.2)
where
R(t) = (hat® + 2yat) "2 (3.22)
Yio) =y f R0 dr — " 4 2 (3.22)
and wherep andg satisfy
dp?q — y1ip' + (yaor+iy2)p =0 (3.23)
dpq® — v1iq' + (vsor— iv2-)g = 0. (3.2%)

As before, we writep = r exp(io), ¢ = r exp(—io); after substituting, and taking real and
imaginary parts we find

r i dr
/ AT ki o=Zegas (3.24)
drs + ysorr1 Vi

4. New reductions to PDEs

In this section we look for reductions of our generalized nonlinear &lihger equation
(3.1) to a PDE, by using (1.7). Substituting in (3.1) and grouping terms we find

cp®q® + pap'{0[2a11 — 2az2 + b1y — bap + 1(2az1 + 2a12 + bo1 + b12)] }
+ p?q'{0law1 — aza + b1y — bao + i(az1 + a1z + ba1 + b12)] }
+ p?q{(d + [a11 + b1 + i(az1 + b)) s + [a12 + b1z + i(az2 + b22)] @) }
+ p'{ig +2i0(®, +i®y)} +ip

+ p{i(@y + @yy) —  — 07— @)} =0. (4.1)

When looking for reductions to ODEs there were several cases to consider owing to the
necessary balance of the coefficientspdfy?, pgp’ and p?q’ (which were functions of,
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only); heretr is one of the new independent variables so this complication does not arise:
the coefficients ofpgp’ and p?q’ are ‘automatically’ balanced, as is the coefficientpof

It remains to balance the coefficients pfq, p: and p. We obtain the determining
system

(x +1y)0 + Yy + i +20(D, +i®,) = T1e(, 1) (4.20)
D, + qDyy = FZ(‘%» 1) (42b)
—® — 92— @2 =T3(&. 1) (4.2)
d + [a11 + b11 + i(a21 + b)) @y + [a12 + b1 + i(az + b)) P, = T4(&, 1) (4.2d)
wherel'q, ..., 'y are to be determined.

Remarks.

1. Equations (42) and (4.21) are complex and therefore each represents two real
equations; equations (4P and (4.2) come from the imaginary and real parts,
respectively, of the coefficient g (and are therefore real).

2. We have introducefl, ¢ rather tharl"y purely for notational convenience.

Adding equation (4.2) to its complex conjugate yields a quadrature fb; and
integrating we obtain
i+I7 x20 1/'/rx
- —_—— — 4,
o THOD (4.3)
whereg(y, t) is a function of integration, to be determined. Substituting this result back
in (4.2a) we find
(Y0 + Vi +20¢1,) = T'ye. (4.4)
The left-hand side of this is independentxofind purely imaginary, sd'y ¢ is necessarily
a purely-imaginary function of alone, i4i(z), say. Integrating equation (4.4) we obtain
iy .
YO  yWhi — yi0))
= T 4.
$1(y, 1) 20 > (4.5)
Note that we have taken the function (pbf integration to be zero without loss of generality,
through a rescaling op (freedom I). So, collecting results,
(Y0 xyr (@i — ()
P = 4.6
(x5, ) 20 20 20 (46
Substituting equation (4.6) in (42 we find that the left-hand side is independent of
both x and y, and real, sd", is necessarily a real function of y»(¢), say, where

D(x,y,1) =

0
5= y2(1). 4.7)

Next, substituting equations (4.6) in (4)2we find that the left-hand side is quadratic
in both x andy; there is no bilinear term so that the right-hand side must be lineér in
(Y31r(?) + iy31i())E + yaor(?) + iy30i(2), Say. Then equating coefficients of like powers of
x andy, and taking real and imaginary parts we find

06 — 262 =0 (4.8)

0y, — 209y, =0 (4.%)

i Y0 Oy
— 4 I = 4.
20 92 92 20 0 (4.&)

i Vli(t))2 = 46ya0i(t) (4.8d)
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together with
y31r = a1 = y30i = 0. (4.8)

It remains to check consistency with (d)2 Substituting equation (4.6) in (42 we
find that the left-hand side is linear in both and y and thereforel'y is linear in &,
(Yarr(t) + iyaai())€E + yaor(t) + iyaoi(t), say. Equating coefficients of like powers of
andy and taking real and imaginary parts we find

(a11+ b11)0 = —2y41:(1)0? (4.9)
(az1 + b21)0 = —2y41i(1)6? (4.%)
(a12 + b12)0 = 2y41i(1)0? (4.%)
(az2 + b22)0 = —2y41:(1)0? (4.9d)

2d6 — (a11 + b1y — (a12 + b12) (¥i — y1i(1)) = 26 {yar¥hr — yarithi + vaor(1)} (4.%)

—(az1 + ba))¥r — (az2 + b22) (Vi — v1i(1)) = 20 {yari¥i + varbi + vaoi(1)} - (4.9)

There are two cases to consider: firstd i&= O then there are no conditions e} andb;;;
otherwise, if6 #£ 0, then we requir@iy + b11 — ax2 — bap + i(az1 + bo1 + a2 + b12) = 0.
So, collecting results we have found two classes of reductions.

Reduction 4. The following reduction holds for all values af;, b;;, c andd:

u(x,y,t) = pE,)explid(x, y, 1)} v(x,y,t) = qE" 1) exp{—id(x,y, 1)} (4.108)
d(x,y, 1) = —%Alx - %Ag,y (4.1)
%'(x,y,t):x-l—iy—kklt—l—)»z—l—i{/ y1i(t1) dt1+)\.3t+)u4} (4.1(13)

where p andg satisfy

cp3q® + (2a11 — 2a07 + by1 — boy + 1(2az1 4 2a12 + by + b12)} pgp’

+{a11 — aga + b11 — by + i(az1 + a1z + ba1 + b12)} p°q’

+(vaor + ivao) p°q — yai®)p' +ip + yzorp = 0 (4.11)
cc.=0 (4.1Db)
where

yaor= —3A5 — 33 (4.122)

yaor = d — 3(a11 + bi)h1 — F(a12 + b1)As (4.1D)

Yaoi = —3(az1+ ba)h1 — (azz + ba2) 313 (4.1%)

Note thaty,;(r) remains an arbitrary function aof which cannot be scaled or translated
away. The method of (symbolic) integration of (4.11) is by no means obvious: with the
coefficient of p?¢’ zero then for some functiong;(r), equation (4.14), may be integrated

by characteristics, but this does not appear to be so for gemeradl; and y1;(t).
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Reduction 5. Provideday; + b11 — azo — boo +i(az1 + bo1 +aip+b1p) =0 (the coefficients
of pgp’ and p?q’ are zero as a consequence) then

ux,y,t)=pE, 0explid(x, y, 1} v(x,y, 1) =qE" )exp{—id(x,y, 0} (4.13R)
Z4y% A ,

D(x,y,1) = al :;y + %x - %yf(llfi - )/1i(t)) (4.1%)

%(xvy’t):Hle"i_)‘l_%"i_iWi(t) (413:)

where;(t) is given by (4.8), and wherep andq satisfy
cp®q® + {vao(t) + iyaci(t) + 3(a11 + b11) + 3i(az2 + b22)} pq

b
—yi@®p +ip+ Pl yaor(t)p =0 (4.14)

in which ys.(¢) is given by (4.81), yaor(?) is given by (4.@) andy,i(¢) by (4.9). As before

y1i(¢t) remains an arbitrary function of In cases where equation (4.11) is transformable to

an equation of constant coefficients and in a small number of other cases equation (4.11) is
integrable by means of characteristics. In other cases the means of (symbolic) integration
is not obvious.

5. Discussion

In this paper we have computed new classes of reduction and associated (special) exact
solution of a generalized nonlinear Soetimger equation (1.1). The new classes are obtained
by allowing the new independent variable to by complex. In all previously computed
reductions of the GNLS the new independent variable has been real.

In section 3 we computed reductions directly from the two-dimensional GNLS to an
ODE, i.e. from an equation in three independent variables to an equation in one; three
new classes of reduction were found. In section 4 we computed reductions from the two-
dimensional GNLS to a PDE in just two independent variables. We computed two new
classes of reductions. One of these new classes includes an arbitrary functigmhiich
cannot be scaled or otherwise transformed away). To the author’'s knowledge no previously
computed reduction of the GNLS has included an arbitrary function.

Finally, it is a simple matter to extend the results obtained here to three (or higher)
dimensions. The necessary requirement is a vanishing coefficignt ab for an ansatz in
which the new independent variable is given by

E(x,y,2,1) = (x 4+ Kk1y + k22)0(1) + Y (1) + 1 (1) (5.1)
we require just
1+x2+x2=0. (52)
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