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Abstract. In this paper we compute new classes of symmetry reduction and associated
exact solutions of a generalized nonlinear Schrödinger equation (GNLS), the generalized terms
modelling dispersion and scattering. Several authors have obtained symmetry reductions of one-,
two- and three-dimensional nonlinear Schrödinger equations; in all cases to date reductions have
been based on areal new independent variable. In this paper we compute reductions in which
the new independent variable is complex. We seek new reductions from a two-dimensional
GNLS to a PDE in two independent variables and also reductions to ODEs. Five new classes
of reduction are found.

1. Introduction

In this paper we compute a new class of symmetry reductions and associated special, exact
solutions of a generalized nonlinear Schrödinger equation:

iut + uxx + uyy + (a1+ ia2) · (i∂x + j∂y)(u|u|2)

+u(b1+ ib2) · (i∂x + j∂y)(|u|2)+ cu|u|4+ du|u|2 = 0 (1.1)

where

a1 = a11i + a12j b1 = b11i + b12j

a2 = a21i + a22j b2 = b21i + b22j
(1.2)

andaij , bij , c andd are real constants. This equation is a generalization of the ubiquitous
cubic nonlinear Schrödinger equation

iut + uxx + du|u|2 = 0. (1.3)

The generalization represents further physical effects such as dispersion and scattering.
Several authors have obtained symmetry reductions of the one-, two- and three-

dimensional nonlinear Schrödinger equation. In all cases the new dependent variable is
complex but the new dependent variable(s) is (are) real. In this paper we seek reductions
in which the new dependent variable(s) is (are) complex.

In many cases the new independent variables in the reductions which have been found
are linear in the given spatial variables; such reductions (at least those to ODEs) are of the
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form

u(x, y, t) = R(t)p(ξ) exp{i8(x, y, t)} (1.4a)

v(x, y, t) = R(t)q(ξ) exp{−i8(x, y, t)} (1.4b)

ξ(x, y, t) = (x + κy)θ(t)+ ψ(t) (1.4c)

with all functions real,κ real and

θ = Rn (1.5)

wheren is an integer. (Reductions found to PDEs take a similar form.) Here we suppose
that the new independent variable,ξ , is not real; we suppose

ξ(x, y, t) = (x + iy)θ(t)+ ψr(t)+ iψi(t) (1.6)

where, again, all functions are real. As a result we are no longer constrained by (1.5) and
are able to compute large classes of new reductions.

In addition to reductions to ODEs based on (1.6) we consider analogous reductions to
PDEs in just two independent variables. We suppose

u(x, y, t) = p(ξ, t)exp{i8(x, y, t)} v(x, y, t) = q(ξ ∗, t)exp{−i8(x, y, t)} (1.7a)

ξ(x, y, t) = (x + iy)θ + ψr(t)+ iψi(t). (1.7b)

Note that in this case we have been able to setR = 1 without loss of generality. (To see
that this is indeed without loss of generality consider (2.8) and its accompanying text.)

2. Background

The nonlinear two-dimensional Schrödinger equation was first derived to describe deep
water waves (Zakharov 1968) and subsequently has arisen in studies of quantum field
theory (Dixon and Tuszýnski 1989, Tuszýnski and Dixon 1989), weakly nonlinear waves
(e.g., Parkes 1987) and optics (e.g., Gagnon and Bélanger 1991).

Special, exact solutions of PDEs are often useful: the solutions may be directly
(physically) significant, they may be of use to obtain information about asymptotics of
other solutions, or can be used to provide a check on numerical solutions. One powerful,
systematic method of determining exact solutions involves the use ofpoint symmetries:
given (1.1), any transformation of the form

x → χ(x, y, t, u) t → τ(x, y, t, u)

y → η(x, y, t, u) u→ υ(x, y, t, u)
(2.1)

which leaves the equationinvariant, i.e. unchanged, is a point symmetry of the equation.
Given the point symmetries of a PDE one can find a corresponding transformation to an
equation with fewer independent variables, areduction. Alternatively, as we do here, one
can seek transformations which reduce a given PDE directly; the corresponding symmetries
may then be deduced if required. The standard,classical, method of determining point
symmetries is due to Lie and is described in several textbooks (Bluman and Kumei 1989,
Hill 1992, Olver 1986, Stephani 1990).

Several papers have been published in which reductions and exact solutions of a
nonlinear Schr̈odinger equation are determined which reflect the point symmetries of the
equation: Tajiri (1982) found symmetries and associated reductions of the two-dimensional
cubic equation (c = a1 = a2 = b1 = b2 = 0); the same symmetries and reductions were
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later found independently by Ramasan and Debnath (1994); Fushchich and Serov (1987)
found some solutions of the three-dimensional equation; Gagnon and co-workers (Gagnon
and Winternitz 1988, 1989, 1990, Gagnonet al 1988) made a systematic study of the
symmetries, associated reductions of the three-dimensional GNLS, and the integrability of
the resulting equations in fewer independent variables. All these studies used the classical
method due to Lie.

For later reference we give the results obtained for (1.1) from Lie’s method (Tajiri 1982,
Ramasami and Debnath 1994). The symmetries are

V1 = ∂t (t-translation) (2.2a)

V2 = ∂x (x-translation) (2.2b)

V3 = ∂y (y-translation) (2.2c)

V4 = y∂x − x∂y (rotation) (2.2d)

V5 = v∂u − u∂v (constant change of phase) (2.2e)

V6 = 2t∂t + x∂x + y∂y − δ(u∂u + v∂v) (scaling) (2.2f )

whereδ = 1 if c = 0 andd 6= 0, and δ = 1
2 is c 6= 0 andd = 0. Also, with aij = 0, we

obtain

V7 = 2it∂x + x(u∂u − v∂v) (Galilean boost) (2.2g)

V8 = 2it∂y + y(u∂u − v∂v). ( ′′ ′′ ). (2.2h)

The corresponding new independent variables are

ξ = x + ν1t + ν2√
Q(t)

ζ = y + ν3t + ν4√
Q(t)

(2.3)

whereQ(t) = ν5t
2+ ν6t + ν7, νi , i = 1, . . . ,7, being constants.

More general methods of finding reductions of PDEs exist, the most significant being
the so-called non-classical method due to Bluman and Cole (1969), and the direct method
due to Clarkson and Kruskal (1989), of which there are, in turn, various extensions and
generalizations (Hood 1995, 1997, 1998). The only study using a more general non-classical
method, to date, appears to be that by Clarkson (1992) who investigated reductions of the
one-dimensional GNLS and showed that the reductions found could readily be extended
to higher-dimensional equations. No study of higher-dimensional GNLS equations using
a nonclassical method has apparently been made to date. (Clarkson did not study higher-
dimensional equations explicitly.)

In this paper we determine several classes of new reduction of the generalized nonlinear
Schr̈odinger equation (1.1), based upon the ansätze (1.6) and (1.7). We follow the Clarkson–
Kruskal method, except that the procedures are complicated by the use of a complex new
independent variable in addition to complex new dependent variables.

The method is well explained by an example (which is based on appendix B of Clarkson
and Kruskal 1989). Suppose we wish to determine reductions of Burgers’ equation

ut + uux + uxx = 0 (2.4)

then one supposes that there exist transformations,u(x, t) = U(x, t, ω(ξ(x, t))), which
yield an ODE inω(ξ). It turns out that it is sufficient to consider

u(x, t) = α(x, t)+ β(x, t)ω(ξ(x, t)) (2.5)
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(appendix B of Clarkson and Kruskal 1989). Substituting equation (2.5) in (2.4) one finds

βξ2
x ω
′′ + (2βxξx + βξxx + βξt + αβξx)ω′ + (βxx + βt + αβx + αxβ)ω

+β2ξxωω
′ + ββxω2+ αt + ααx + αxx = 0 (2.6)

and requiring that this be an ODE one then obtains a system of PDEs for the unknown
functions,α, β andξ , viz.

βξ2
x 01(ξ) = 2βxξx + βξxx + βξt + αβξx (2.7a)

βξ2
x 02(ξ) = βxx + βt + αβx + αxβ (2.7b)

βξ2
x 03(ξ) = β2ξx (2.7c)

βξ2
x 04(ξ) = ββx (2.7d)

βξ2
x 0(5ξ) = αt + ααx + αxx (2.7e)

where0i(ξ), i = 1, . . . ,5, are to be determined. Solution of the system yields the desired
reductions.

Any particular reduction is in fact a class of reductions equivalent through a
transformation of the new variables. One can make use of this by redefinitions of these
variables during the computation:

1. For example, any reduction which leads to

dR3(t)|p|2p + iR(t)ṗ − if (t)R(t)pξ + iṘ(t)p + g(t)R(t)p = 0 (2.8)

is equivalent to one in whichR = 1 through a rescaling ofp → R−1p. This is why
we may setR = 1 without loss of generality in ansatz (1.7).

2. One can also redefine the new independent variable in a similar way, however, since
we have already chosen the form in this paper (cf equation (1.6)) then we do not use
this freedom here.

Many reductions of the GNLS found to date are of the form

u(x, y, t) = R(t)p(ξ) exp{i8(x, y, t)} (2.9a)

ξ(x, y, t) = n · xθ(t)+ ψ(t) (2.9b)

(in one, two or three dimensions, and by both classical and non-classical methods). In
each one finds thatθ andR must satisfy (1.5); this is a particularly restrictive condition.
Substituting equations (2.9) in (3.1a) one finds a result of the form

(n2
1+ n2

2+ n2
3)Rθ

2p′′ + R3θ(2a11+ · · ·)pqp′ + R3θ(a11− · · ·)p2q ′

+R3(d + · · ·)p2q + (· · ·)p′ + (· · ·)p = 0. (2.10)

Balancing the coefficient ofp′′ with the other coefficients leads to (1.5). In this paper we
use ans̈atze which circumvent (1.5): the new independent variable is complex. (To the
author’s knowledge only real new independent variables have been previously considered.)



A new class of solutions to a GNLS 9719

Notation. Unless otherwise stated the following notation is used in sections 3 and 4:

1. λi , i = 1, 2, . . . are real constants, for example constants of integration, which remain
arbitrary.

2. 0i , i = 1, 2, . . . are functions obtained in balancing coefficients of products of powers
of derivatives of new dependent variables; these are to be determined. Often it turns
out that these are necessarily constant. In this case0i is replaced withγi . (In addition,
in section 4 we use the lower case when a balance-function is necessarily a function
of t alone.)

3. New reductions to ODEs

In this section we compute reductions of (1.1) by using the ansatz (1.6). Two terms in
(1.1) are non-analytic. To overcome this problem, we definev(x, y, t) to be the complex
conjugate ofu(x, y, t) and so write (1.1) as the system

iut + uxx + uyy + (a1+ ia2) · (i∂x + j∂y)(u2v)+ u(b1+ ib2) · (i∂x + j∂y)(uv)

+ cu3v2+ du2v = 0 (3.1a)

−ivt + vxx + vyy + (a1− ia2) · (i∂x + j∂y)(uv2)+ v(b1− ib2) · (i∂x + j∂y)(uv)

+ cu2v3+ duv2 = 0. (3.1b)

Remarks.

1. Note that sinceξ is complex we requireq(ξ) to be the complex-conjugate ofp(ξ)
throughout the complex plane, rather than just along the real line.

2. When balancing coefficients of products of powers of derivatives ofp andq, in general,
each resulting equation is complex and is therefore equivalent to two real equations.

Substituting equation (1.6) in (3.1a) and grouping terms we find

cR5p3q2+ pqp′{R3θ [2a11− 2a22+ b11− b22+ i(2a21+ 2a12+ b21+ b12)]
}

+p2q ′
{
R3θ [a11− a22+ b11− b22+ i(a21+ a12+ b21+ b12)]

}
+p2q

{
R3
(
d + [a11+ b11+ i(a21+ b21)]8x

+ [a12+ b12+ i(a22+ b22)]8y

)}+ p′{iRξt + 2iRθ(8x + i8y)
}

+p{iṘ + iR(8xx +8yy)− R(8̇+82
x +82

y)
} = 0. (3.2)

Focusing on the coefficients ofp3q2, pqp′ andp2q ′ we find that there are three cases to
consider. First,̇θ = Ṙ = 0 with c 6= 0 and at least one of the coefficients ofpqp′ andp2q ′

non-zero. Second,c 6= 0 and the coefficients ofpqp′ andp2q both equal to zero. Third,
c = 0 and the coefficients of bothpqp′ andp2q ′ zero. We consider each of these cases in
turn in the follwoing subsections. Since the computation is similar for each subsection, we
give the details leading to reductions only in subsection 3.2; in the other cases we simply
quote the results. (One might suppose two other cases exist: first,c 6= 0 and at least one of
the coefficients ofpqp′ andp2q non-zero, withθ(t) = R2(t); second,c = 0 and at least
one of the coefficients ofpqp′ andp2q non-zero withθ̇ 6= 0. It turns out that there are no
reductions in either case.)
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3.1. c 6= 0, at least one of the coefficients ofpqp′ andp2q ′ non-zero

In this section we consider the first case, i.e.θ̇ = Ṙ = 0. There is just one reduction.

Reduction 1. For any values ofaij , bij , c andd, then

u(x, y, t) = p(ξ) exp{i8(x, y, t)} v(x, y, t) = q(ξ ∗) exp{−i8(x, y, t)} (3.3a)

8(x, y, t) = − 1
2λ1x − 1

2(λ3− γ1i)y − 1
4(λ

2
1+ λ2

3)− γ40r (3.3b)

ξ(x, y, t) = x + iy + λ1t + λ2+ i(λ3t + λ4) (3.3c)

reduces the two-dimensional GNLS to the system

cp3q2+ {2a11− 2a22+ b11− b22+ i(2a21+ 2a12+ b21+ b12)
}
pqp′

+ {a11− a22+ b11− b22+ i(a21+ a12+ b21+ b12)
}
p2q ′

+ {d − 1
2λ1[(a11+ b11)+ i(a21+ b21)]

− 1
2(λ3− γ1i)[a12+ b12+ i(a22+ b22)]

}
p2q − γ1ip

′ + γ40rp = 0 (3.4a)

c.c.= 0. (3.4b)

To integrate (3.4) writep = r exp(iσ), q = r exp(−iσ), and take real and imaginary parts
yielding

cr5+ {3a11− 3a22+ 2b11+ 2b22
}
r2r ′ − {a21+ a12

}
r3σ ′ + {d − 1

2λ1(a11+ b11)

− 1
2(λ3− γ1i)(a12+ b12

}
r3− γ1ir

′ + γ40r = 0 (3.5a){
3a21+ 3a12+ 2b21+ 2b12

}
r2r ′ + {a11− a22

}
r3σ ′

− 1
2

{
λ1(a21+ b21)+ (λ3− γ1i)(a22+ b22)

}
r3− γ1irσ

′ = 0. (3.5b)

This system forr and σ is integrable in terms of quadratures; there are several cases
depending upon the value of the (constant) coefficients within the system.

3.2. c 6= 0, coefficients of bothpqp′ andp2q ′ zero

Given that the coefficients of bothpqp′ andp2q ′ are equal to zero, after a little algebra we
find

a11− a22 = 0 a21+ a12 = 0

b11− b22 = 0 b21+ b12 = 0.
(3.6)

Equation (3.2) becomes

cR5p3q2+ p′{iRξt + 2iRθ(8x + i8y)
}+ p2q

{
R3
(
d + [a11+ b11+ i(a21+ b21)]8x

+ [a12+ b12+ i(a22+ b22)]8y

)}+ p{iṘ + iR(8xx +8yy)

−R(8̇+82
x +82

y)
} = 0 (3.7)
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and then balancing coefficients of powers of products of derivatives ofp andq we find the
determining system

ξt + 2θ(8x + i8y) = R401,ξ (3.8a)

Ṙ + R(8xx +8yy) = R502 (3.8b)

−8̇−82
x −82

y = R403 (3.8c)

d + [a11+ b11+ i(a21+ b21)]8x + [a12+ b12+ i(a22+ b22)]8y = R204. (3.8d)

Remarks.

1. We have introduced01,ξ rather than01 purely for notational convenience.
2. 01,ξ is the coefficient of ip′, not p′.
3. Equations (3.8a) and (3.8b) are complex and therefore each represents two real

equations, whilst (3.8b) and (3.8c) are real equations, from the imaginary and real
parts of the coefficent ofp.

Adding equations (3.8a) to its complex conjugate we obtain a quadrature for8(x, y, t)

and integrating this with respect tox we obtain

8(x, y, t) = R4

4θ2
(01+ 0∗1)−

x2θ̇

4θ
− xψ̇r

2θ
+ φ1(y, t) (3.9)

whereφ1(y, t) is a function of integration, to be determined, and0∗1 is the complex conjugate
of 01. Substituting back in (3.8a) we find

i(yθ̇ + ψ̇i + 2θφ1,y) = R401(ξ). (3.10)

The right-hand side is independent ofx and has no real part, so01,ξ is necessarily constant,
iγ1i, say. Now integrating (3.10) we obtain

φ1(y, t) = −y
2θ̇

4θ
− y

2θ
(ψ̇i − γ1iR

4)+ φ10(t) (3.11)

whereφ1(t) is a function of integration. Collecting results we have

8(x, y, t) = − θ̇
4θ

(
x2+ y2

)− xψ̇r

2θ
− y

2θ

(
ψ̇i − γ1iR

4
)+ φ10(t). (3.12)

Given (3.12), the left-hand side of (3.8b) is independent ofx andy, and is also real, so
that02 is necessarily constant and real,γ2r, say, and we have

Ṙ − θ̇
θ
R = γ2rR

5 (3.13)

a Bernoulli equation forR(t), given θ(t).
Next, substituting (3.12) in (3.8c) we see that the left-hand side is quadratic in bothx

and y so, without loss of generality, we suppose that03(ξ) = γ32ξ
2 + γ31ξ + γ30. Then

equating like coefficients of products of powers ofx andy, and taking real and imaginary
parts, we findγ32 = γ31 = 0, γ30 is real,γ30r, say, and

θ θ̈ − 2θ̇2 = 0 (3.14a)

θψ̈r − 2θ̇ ψ̇r = 0 (3.14b)

θψ̈i − 2θ̇ ψ̇i − 4γ1iθR
3Ṙ + 2γ1iθ̇R

4 = 0 (3.14c)
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and

φ10(t) =
∫ {

γ30r+ ψ̇2
r

4θ2
+ 1

4θ2
(ψ̇2

i + γ1iR
4)2
}

dt. (3.15)

It remains to check consistency with (3.8d). Substituting equation (3.12) in (3.8d) we
see that04 must be linear,(γ41r + iγ41i)ξ + γ40r + γ40i say. Then equating coefficients
of products of powers ofx and y, and taking real and imaginary parts we find that
γ41r = γ41i = γ40i = 0 and consequently

a11+ b11 = a12+ b12 = 0 (3.16)

and d = γ40rR
2, i.e. R is necessarily constant ifd is non-zero. This is inconsistent with

(3.14a) and (3.13), sod = 0. Similarly we find that

a21+ b21 = a22+ b22 = 0. (3.17)

(Note that equations (3.6), (3.16) and (3.17) donot mean thataij = 0 and/orbij = 0, for
all i, j !)

Neglecting constant solutions of (3.14a), which are considered in subsection 3.1, we
have obtained one reduction of (3.1).

Reduction 2. Given equations (3.6), (3.16) and (3.17) (conditions onaij and bij , which,
as a special case are satisfied byaij = bij = 0 for all i, j ), and providedd = 0 then

u(x, y, t) = R(t)p(ξ) exp{i8(x, y, t)} v(x, y, t) = R(t)q(ξ∗) exp{−i8(x, y, t)}
(3.18a)

8(x, y, t) = x2+ y2

4t
− 1

2λ1xt − 1
2yt

(
ψ̇i + γ1iR

4(t)
)+ φ10(t) (3.18b)

ξ(x, y, t) = x + iy

t
− λ1

t
+ λ2+ iψi(t) (3.18c)

where

R(t) = (λ3t
4+ 4

3γ2rt
)−1/4

(3.18d)

ψi(t) = γ1i

∫
R4(t) dt − λ4

t
+ λ5 (3.18e)

and wherep andq satisfy

cp3q2− γ1ip
′ + (γ30r+ iγ2r)p = 0 (3.19a)

cp2q3− γ1iq
′ + (γ30r− iγ2r)q = 0. (3.19b)

To integrate (3.19) we writep = r exp(iσ), q = r exp(−iσ), and substituting and taking
real and imaginary parts we find

cr5− γ1ir
′ + γ30rr = 0 (3.20a)

−γ1iσ
′ + γ2r = 0 (3.20b)

from which it is easy to determine bothr andσ . We find that∫ r γ1i dr1
cr5

1 + γ30rr1
= ξ + λ6 σ = γ2r

γ1i
ξ + λ7. (3.21)
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3.3. c = 0, coefficients ofpqp′ andp2q ′ zero

We obtain just one reduction.

Reduction 3. Providedc = 0 and

a11− a22 = a21+ a12 = b11− b22 = b21+ b12

= a11+ b11 = a12+ b12 = a21+ b21 = a22+ b22 = 0.

then

u(x, y, t) = R(t)p(ξ) exp{i8(x, y, t)} v(x, y, t) = R(t)q(ξ∗) exp{−i8(x, y, t)}
(3.22a)

8(x, y, t) = x2+ y2

4t
− 1

2λ1xt − 1
2yt

(
ψ̇i + γ1iR

4(t)
)+ φ10(t) (3.22b)

ξ(x, y, t) = x + iy

t
− λ1

t
+ λ2+ iψi(t) (3.22c)

where

R(t) = (λ3t
2+ 2γ2rt

)−1/2
(3.22d)

ψi(t) = γ1i

∫
R2(t) dt − λ4

t
+ λ5 (3.22e)

and wherep andq satisfy

dp2q − γ1ip
′ + (γ30r+ iγ2r )p = 0 (3.23a)

dpq2− γ1iq
′ + (γ30r− iγ2r )q = 0. (3.23b)

As before, we writep = r exp(iσ), q = r exp(−iσ); after substituting, and taking real and
imaginary parts we find∫ r γ1i dr1

dr3
1 + γ30rr1

= ξ + λ6 σ = γ2r

γ1i
ξ + λ7. (3.24)

4. New reductions to PDEs

In this section we look for reductions of our generalized nonlinear Schrödinger equation
(3.1) to a PDE, by using (1.7). Substituting in (3.1) and grouping terms we find

cp3q2+ pqp′{θ [2a11− 2a22+ b11− b22+ i(2a21+ 2a12+ b21+ b12)]
}

+p2q ′
{
θ [a11− a22+ b11− b22+ i(a21+ a12+ b21+ b12)]

}
+p2q

{(
d + [a11+ b11+ i(a21+ b21)]8x + [a12+ b12+ i(a22+ b22)]8y

)}
+p′{iξt + 2iθ(8x + i8y)

}+ iṗ

+p{i(8xx +8yy)− 8̇−82
x −82

y)
} = 0. (4.1)

When looking for reductions to ODEs there were several cases to consider owing to the
necessary balance of the coefficients ofp3q2, pqp′ andp2q ′ (which were functions oft ,
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only); heret is one of the new independent variables so this complication does not arise:
the coefficients ofpqp′ andp2q ′ are ‘automatically’ balanced, as is the coefficient ofṗ.

It remains to balance the coefficients ofp2q, pξ and p. We obtain the determining
system

(x + iy)θ̇ + ψ̇r + iψ̇i + 2θ(8x + i8y) = 01,ξ (ξ, t) (4.2a)

8xx +8yy = 02(ξ, t) (4.2b)

−8̇−82
x −82

y = 03(ξ, t) (4.2c)

d + [a11+ b11+ i(a21+ b21)]8x + [a12+ b12+ i(a22+ b22)]8y = 04(ξ, t) (4.2d)

where01, . . . , 04 are to be determined.

Remarks.

1. Equations (4.2a) and (4.2d) are complex and therefore each represents two real
equations; equations (4.2b) and (4.2c) come from the imaginary and real parts,
respectively, of the coefficient ofp (and are therefore real).

2. We have introduced01,ξ rather than01 purely for notational convenience.

Adding equation (4.2a) to its complex conjugate yields a quadrature for8x and
integrating we obtain

8(x, y, t) = 01+ 0∗1
4θ2

− x
2θ̇

4θ
− ψ̇rx

2θ
+ φ1(y, t) (4.3)

whereφ1(y, t) is a function of integration, to be determined. Substituting this result back
in (4.2a) we find

i(yθ̇ + ψ̇i + 2θφ1,y) = 01,ξ . (4.4)

The left-hand side of this is independent ofx and purely imaginary, so01,ξ is necessarily
a purely-imaginary function oft alone, iγ1i(t), say. Integrating equation (4.4) we obtain

φ1(y, t) = −y
2θ̇

4θ
− y(ψ̇i − γ1i(t))

2θ
. (4.5)

Note that we have taken the function (oft) of integration to be zero without loss of generality,
through a rescaling ofp (freedom I). So, collecting results,

8(x, y, t) = − (x
2+ y2)θ̇

4θ
− xψ̇r

2θ
− y(ψ̇i − γ1i(t))

2θ
. (4.6)

Substituting equation (4.6) in (4.2b) we find that the left-hand side is independent of
both x andy, and real, so02 is necessarily a real function oft , γ2(t), say, where

− θ̇
θ
= γ2(t). (4.7)

Next, substituting equations (4.6) in (4.2c) we find that the left-hand side is quadratic
in both x andy; there is no bilinear term so that the right-hand side must be linear inξ ,
(γ31r(t) + iγ31i(t))ξ + γ30r(t) + iγ30i(t), say. Then equating coefficients of like powers of
x andy, and taking real and imaginary parts we find

θ θ̈ − 2θ̇2 = 0 (4.8a)

θψ̈r − 2θ̇ ψ̇r = 0 (4.8b)

ψ̈i

2θ
− ψ̇i θ̇

θ2
+ θ̇γ1i(t)

θ2
− γ̇1i

2θ
= 0 (4.8c)

−ψ̇2
r −

(
ψ̇i − γ1i(t)

)2 = 4θ2γ30r(t) (4.8d)
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together with

γ31r = γ31i = γ30i = 0. (4.8e)

It remains to check consistency with (4.2d). Substituting equation (4.6) in (4.2d) we
find that the left-hand side is linear in bothx and y and therefore04 is linear in ξ ,
(γ41r(t) + iγ41i(t))ξ + γ40r(t) + iγ40i(t), say. Equating coefficients of like powers ofx
andy and taking real and imaginary parts we find

(a11+ b11)θ̇ = −2γ41r(t)θ
2 (4.9a)

(a21+ b21)θ̇ = −2γ41i(t)θ
2 (4.9b)

(a12+ b12)θ̇ = 2γ41i(t)θ
2 (4.9c)

(a22+ b22)θ̇ = −2γ41r(t)θ
2 (4.9d)

2dθ − (a11+ b11)ψ̇r − (a12+ b12)
(
ψ̇i − γ1i(t)

) = 2θ {γ41rψr − γ41iψi + γ40r(t)} (4.9e)

−(a21+ b21)ψ̇r − (a22+ b22)
(
ψ̇i − γ1i(t)

) = 2θ {γ41iψr + γ41rψi + γ40i(t)} . (4.9f )

There are two cases to consider: first, ifθ̇ = 0 then there are no conditions onaij andbij ;
otherwise, ifθ̇ 6= 0, then we requirea11+ b11− a22− b22+ i(a21+ b21+ a12+ b12) = 0.
So, collecting results we have found two classes of reductions.

Reduction 4. The following reduction holds for all values ofaij , bij , c andd:

u(x, y, t) = p(ξ, t)exp{i8(x, y, t)} v(x, y, t) = q(ξ ∗, t)exp{−i8(x, y, t)} (4.10a)

8(x, y, t) = − 1
2λ1x − 1

2λ3y (4.10b)

ξ(x, y, t) = x + iy + λ1t + λ2+ i

{∫ t

γ1i(t1) dt1+ λ3t + λ4

}
(4.10c)

wherep andq satisfy

cp3q2+ {2a11− 2a22+ b11− b22+ i(2a21+ 2a12+ b21+ b12)}pqp′

+ {a11− a22+ b11− b22+ i(a21+ a12+ b21+ b12)}p2q ′

+(γ40r+ iγ40i)p
2q − γ1i(t)p

′ + iṗ + γ30rp = 0 (4.11a)

c.c.= 0 (4.11b)

where

γ30r = − 1
4λ

2
1− 1

4λ
2
3 (4.12a)

γ40r = d − 1
2(a11+ b11)λ1− 1

4(a12+ b12)λ3 (4.12b)

γ40i = − 1
2(a21+ b21)λ1− (a22+ b22)

1
2λ3. (4.12c)

Note thatγ1i(t) remains an arbitrary function oft which cannot be scaled or translated
away. The method of (symbolic) integration of (4.11) is by no means obvious: with the
coefficient ofp2q ′ zero then for some functionsγ1i(t), equation (4.11a), may be integrated
by characteristics, but this does not appear to be so for generalaij , bij andγ1i(t).
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Reduction 5. Provideda11+ b11− a22− b22+ i(a21+ b21+ a12+ b12) = 0 (the coefficients
of pqp′ andp2q ′ are zero as a consequence) then

u(x, y, t) = p(ξ, t)exp{i8(x, y, t)} v(x, y, t) = q(ξ∗, t)exp{−i8(x, y, t)} (4.13a)

8(x, y, t) = x2+ y2

4t
+ λ3x

t
− 1

2yt
(
ψ̇i − γ1i(t)

)
(4.13b)

ξ(x, y, t) = x + iy

t
+ λ1− λ2

t
+ iψi(t) (4.13c)

whereψi(t) is given by (4.8c), and wherep andq satisfy

cp3q2+ {γ40r(t)+ iγ40i(t)+ 1
2(a11+ b11)+ 1

2i(a22+ b22)
}
p2q

− γ1i(t)p
′ + iṗ + i

t
p + γ30r(t)p = 0 (4.14)

in whichγ30r(t) is given by (4.8d), γ40r(t) is given by (4.9e) andγ40i(t) by (4.9f ). As before
γ1i(t) remains an arbitrary function oft . In cases where equation (4.11) is transformable to
an equation of constant coefficients and in a small number of other cases equation (4.11) is
integrable by means of characteristics. In other cases the means of (symbolic) integration
is not obvious.

5. Discussion

In this paper we have computed new classes of reduction and associated (special) exact
solution of a generalized nonlinear Schrödinger equation (1.1). The new classes are obtained
by allowing the new independent variable to by complex. In all previously computed
reductions of the GNLS the new independent variable has been real.

In section 3 we computed reductions directly from the two-dimensional GNLS to an
ODE, i.e. from an equation in three independent variables to an equation in one; three
new classes of reduction were found. In section 4 we computed reductions from the two-
dimensional GNLS to a PDE in just two independent variables. We computed two new
classes of reductions. One of these new classes includes an arbitrary function int (which
cannot be scaled or otherwise transformed away). To the author’s knowledge no previously
computed reduction of the GNLS has included an arbitrary function.

Finally, it is a simple matter to extend the results obtained here to three (or higher)
dimensions. The necessary requirement is a vanishing coefficient ofp′′, so for an ansatz in
which the new independent variable is given by

ξ(x, y, z, t) = (x + κ1y + κ2z)θ(t)+ ψr(t)+ iψi(t) (5.1)

we require just

1+ κ2
1 + κ2

2 = 0. (5.2)
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